Geophysical tools for prognosis of deformation in hardrock environments

Publication: ResearchDoctoral thesis

Downloaded 341 times

Documents

Underground mining of the Kiirunavaara iron mineralization is causing large-scale deformation of the hangingwall of the orebody. To understand and possibly predict future deformation, a structural model of the hanging wall and a good understanding of the petrophysical and mechanical properties of the constituent rocks is necessary.

This thesis presents results from the study of Anisotropy of Magnetic Susceptibility (AMS), magneto-mineralogy, fracture frequency (F/m), rock quality (RQD), rock strength (Point Load) and P-wave velocity and anisotropy of the rocks from the hanging wall, as well as seismic reflection surveying and gravity modelling. The results are combined into a structural model of the hanging wall and further used for analysis of the correlation between petrophysical and rock mechanical parameters.

In total, 76 samples from 12 outcrops and 295 samples from three drillcores in the hanging wall have been included in the AMS study. Axial and diametrical P-wave velocity was measured on 25 water-saturated samples and 156 samples were used for the Point Load tests. F/m and RQD data for the drillcores already existed. The drillcores are located along the eastern end of the seismic profiles and consist of both crystalline and sedimentary rocks.

A high degree of magnetic anisotropy observed in the crystalline rocks indicates a low degree of metamorphism. AMS data also indicates the presence of a magnetic foliation in the rocks. The dip of the magnetic foliation plane (F) and the degree of magnetic anisotropy (Pj) measured in samples from outcrops was plotted as iso-maps and shows that both F and Pj decreases towards the east, which was confirmed by data from the drillcores. The decrease in both parameters is primarily a reflection of a change in rock type, but is also changing within the crystalline rock sequence.

A good correlation (r > 0.6) between Pj, and F and RQD, and F and F/m was observed in one drillcore for both crystalline and sedimentary rocks; and between the shape parameter (T) and F/m in crystalline rock in another drillcore. This suggests the AMS parameter may be used as an indicator of rock mechanical properties. AMS data was also correlated to joint strike orientations and it was concluded that AMS can also be used to predict joint orientation.

Two parallel reflection seismic profiles were shot within the town of Kiruna i order to locate deformation zones and lithological boundaries in the hangingwall. No deformation zones were found, but five seismic reflectors corresponding to five lithological boundaries were located, and their strike and dip calculated. The result of the seismic survey was used to constrain the gravity model, as was density measurements of 230 samples from the drillcores. The gravity model has a depth of three km, and indicates that the crystalline rock in the hanging wall can be separated into two parallel N-S trending blocks.
Original languageEnglish
Publication dateNov 2011
Place of publicationLuleå
PublisherLuleå tekniska universitet
ISBN (print)978-91-7439-356-9
StatePublished
NameDoctoral thesis / Luleå University of Technology
ISSN (print)1402-1544

Note re. dissertation

DISPUTATION

Ämnesområde: Tillämpad geofysik/Applied Geophysics

Opponent: PhD Satu Mertanen, Geological Survey of Finland, Åbo

Ordförande: Professor Sten-Åke Elming, Institutionen för samhällsbyggnad och naturresurser, Luleå tekniska universitet

Tid: Måndag den 19 december 2011, kl 10.00

Plats: F531, Luleå tekniska universitet